

Team Phoenix: Georgia Institute of Technology

Ali Kazmi, Albert Chen, Aman Jain, Marissa Sorkin, Nicole Prindle, Sudhanshu Agrawal Advisor: Vijay Thakkar (Team 11)

About Us: We are Team Phoenix! We are six computer science students with diverse academic and personal backgrounds. Our experiences include outreach programs that promote STEM to underrepresented youths and fostering inclusion for Women and LGBTQ groups in CS. We come from diverse geographical and ethnic backgrounds, representing five states and four countries. We study seven of the eight CS concentrations Georgia Tech offers.


Application/Benchmark Duos: For a balanced division of labor, we split into specialized pairs.

10500 **MemXCT**

	Hardware and Software Configurations						
		HPL	HPCG	10500	MemXCT	GROMACS	CESM
		Planning to use NDv2 Series VMs	Use NC24r nodes because of RDMA support with high memory band-	1x Management node (Av2 standard)	CPU: Use HB Nodes (HBv2 if available, else HB60)	Use NC24s_v3 to leverage compute of V100 GPUs	Use HB-series nodes (HBv2 if available, else HB60)
		8 NVIDIA Tesla V100 GPU, 40 vCPU	If CPU only config is bet-	2x High-throughput nodes for storage and MDS (D64d_v4)	Memory bandwidth is biggest bottleneck GPU: Use NVIDIA Tesla	GROMACS works best with several high clock	Higher core count leads to better performance
	O,	Has NVLINK, high band- width connection between GPUs	ter, use HC-series which has Intel MKL library	These nodes have fast and large SSD storage	V100s (NCv3) Performance benefits from GPU cache optimizations	speed cores per GPU	Leverage RDMA to reduce IPC bottleneck
Software	So	Use NVIDIA binary, which uses OpenMPI and CUDA	Use either NVIDIA's op- timized binary, or Intel's optimized MKL based binary based on perfor-	BeeGFS file system for high throughput and ease of use	Aim to compile using AOCC for better performance Install CUDA for GPU	Configure nodes with Singularity , use the GROMACS container available in NVIDIA GPU	Use GNU compilers Build CESM Image on top of Azure CentOS for easy deployment
	ftwa	Setup NVIDIA Tesla drivers before competition	mance Use Intel MPI on which-	Use Intel Compilers and Intel MPI	version Tuno tile block and	Cloud registry	Optimize PE layout on PACE-ICE. This should
	TO TO	Use Intel MKL for opti- mized linear algebra	ever binary we choose		Tune tile, block, and buffer sizes on PACE to save Azure credits	NVIDIA container contains optimized modules and drivers	

Competition Strategy:

Cluster Configuration

- All Clusters based off CentOS 7 with updated compilers
- This is the default image, it will have the best compatibility with Azure Infiniband.
- Use PBS Batch Scheduler.
- Have cluster configurations for each app/benchmark finalized, and have necessary dependencies installed on each cluster before the competition.

Budget Management

- Split budget 20% for benchmarks, 80% for applications. During the competition, we will try to move funds from benchmarks to apps whenever possible.
- Most benchmarks take little time to run if we saturate GPUs, and most applications take many cores and days to run.
- Using SKU costs, we can calculate cost per node-hour for each application. During the competition we can allocate nodes for apps on the fly, while staying under budget.

Preparation Strategy:

Georgia Tech Class on Student Cluster Competition:

- Gained familiarity with HPC concepts
- · Weekly meetings made sure we had constant engagement
- · We get to know each other, and learn about each other's apps

Application/Benchmark Preparation

We will use PACE-ICE, a Georgia Tech HPC cluster, to tune applications. That way, we can use the majority of our Azure practice credits to tune benchmarks. Benchmarks are sensitive to hard ware and we want to minimize the costs of running benchmarks so we will tune those directly on Azure.

Applications are sensitive to configurations, so we will use PACE-ICE to experiment with how input parameters affect performance. We can extrapolate from our observations during the competition. We have surveyed past SCC apps to prepare for the mystery app.

Why We Will Succeed:

University Support:

We have world class faculty helping us prepare Dr. Richard Vuduc, Dr. Aaron Jezghani, Dr. Jeff Young, Will Powell Georgia Tech has a **strong SC presence** and past SCC experience The College of Computing is a leader in computing education We have a **specialized course** for SCC preparation

The Team:

PACE-ICE

We are **talented** and **motivated** to win We are **passionate** about computer science 3 of us TA for core computer science courses 4 of us do undergraduate research All 6 of us have industry experience We have been working together since January

Industry Support:

Penguin Computing supports Georgia Tech and PACE Intel and NVIDIA provide us with HPL binaries Industry connections help us prepare